Design Patterns
The Timeless Way of Coding

Designed and Presented by
Dr. Heinz Kabutz

lllustrations by Edith Sher

Copyright © 2001 Maxkab Solutions CC — All Rights Reserved

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Who am [|?

« Java Programmer
* Trainer of Java and Design Patterns

Courses In various places of the world

Java Consultant
— combining Confuse and Insult

Publish a Java newsletter with a small
audience of Java specialists

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

AN

Purpose of Talk

1. To give something back to the Cape Town
Java community

2. Explain a bit about why Design Patterns
are important

3. Inspire you to learn for yourself

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Questions

* Please please please please ask questions!

* There are some stupid questions
— They are the ones you didn’t ask

— Once you’ve asked them, they are not stupid
anymore

* Assume that if you didn’'t understand
something that it was my fault

* The more you ask, the more everyone
learns (including me)

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

(@)

What is a Design Pattern?

* A design idea that has been applied many
times, with success

* Designs that result in reusable code

 In our case, we will look at Object Oriented
Design Patterns

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Vintage Wines

« Design Patterns are like good red wine
— You cannot appreciate them at first

— As you study them you learn the difference
between plonk and vintage

— As you become a connoisseur you experience
the various textures you didn’t notice before
« Warning: Once you are hooked,
you will no longer be satisfied
with plonk!

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Why are patterns so important?

SNV

. Provide a view into the brains P\
of OO experts '

* Help you understand existing
designs

« Patterns in Java, Volume 1,
Mark Grand writes
— "What makes a bright, experienced programmer

much more productive than a bright, but
Inexperienced, programmer is experience."

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

O

Coding Patterns

* We have all seen patterns in code:
(i=0,; i<names.length; i++)
— common data structures, like linked list
* This is the way we “do things”

* Most courses teach the syntax of a
language, not the semantics

* Design is normally learnt through
experience

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

=
o

Introduction

* For this talk | assume you have a good
understanding of the basic OO concepts of
encapsulation, abstraction, composition and
iInheritance

 Should be able to follow basic UML class
diagrams

« Design Patterns is the recommended text;
additional references are shown where
applicable

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

—
—

“Design Patterns™ book by
Gang of Four (GoF)

Contains a collection of
basic “patterns” that
experienced OO developers use regularly

Cannot proceed very far in Java / C++/
VB.NET without understanding patterns

Facilitates better communication

Based on work of renegade architect
Christopher Alexander in “The Timeless Way
of Building”

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

=
N

Pattern Structure

» Classic
— Intent
— Also Known As
— Motivation
— Applicabllity
— Structure
— Participants
— Collaborations
— Consequences
— Implementation
— Sample Code
— Known Uses
— Related Patterns

« This Course

— Intent

— Also Known As
— Motivation

— Sample Code
— Applicability

— Structure

— Consequences

— Known Uses In
Java

 The other

sections are left

for self-study

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

\What's in a name?

The Timeless Way of Building

The search for a name is a fundamental
part of the process of inventing or
discovering a pattern.

So long as a pattern has a weak name, it
means that it is not a clear concept, and
you cannot tell me to make “one”.

Misuse of Design Patterns
« Patterns Misapplied

— “design” patterns should not be used during
analysis

« Cookie Cutter Patterns
— patterns are generalised solutions

* Misuse By Omission
— reinventing a crooked wheel

Summary

* Object Orientation is here to stay

* Design Patterns will fast-track you in
learning how to design with objects

2: Composite

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

=
o

Composite

 |ntent

— Compose objects into tree structures to
represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions
of objects uniformly.

 Intent according to Vlissides

— Assemble objects into tree structures. Composite
simplifies clients by letting them treat individual
objects and assemblies of objects uniformly.

+sehcVialiimsg. String) void

+add{contact.Contact):void
+remove(contact.Contact):void

A

¢
DistributionList
-contacts:List=new LinkedList(

+sendMail{msg:String):void

+Person{email:String)
+sendMailimsg:String):void +add{contact.Contact):void

+remove{contact.Contact):void

Sample Code: Contact

public abstract class Contact {
public void add(Contact contact) {}
public void remove (Contact contact) {}
public abstract void sendMail (String msg) ;

}

Sample Code: Person

public class Person extends Contact {
private final String email;
public Person(String email) ({
this.email = email;

}

public void sendMail (String msg) ({
System.out.println("To: " + email) ;
System.out.println("Msg: " + msqg);
System.out.println() ;

}

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Sample Code: Distributionl ist

import java.util.*;
public class Distributionlist extends Contact ({
private List contacts = new LinkedList() ;
public void add(Contact contact) {
contacts.add (contact) ;
}
public void remove (Contact contact) ({
contacts.remove (contact) ;

}

public void sendMail (String msg) {
Iterator it = contacts.iterator () ;
while (it.hasNext()) {
((Contact)it.next()) .sendMail (msqg) ;

}

Sample Code: MailClient

public class MailClient ({
public static void main(String[] args) {
Contact tjsn = new DistributionlList() ;
tjsn.add (new Person("john@aol.com")) ;

Contact students = new DistributionList() ;
students.add (new Person("amrita@intnet.mu")) ;
tjsn.add (students) ;
tjsn.add (new Person ("anton@bea.com")) ;
tjsn.sendMail (

"welcome to the 5th edition of ...");

> java MailClient

To: john(@aol.com
Msg: welcome to the 5th edition of

To: amrita@intnet.mu
Msg: welcome to the 5th edition of

To: anton(@bea.com
Msg: welcome to the 5th edition of

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

Applicability: Composite

« Use the Composite pattern when

— you want to represent part-whole hierarchies of
objects.

— you want clients to be able to ignore the
difference between compositions of objects and
individual objects.

+operation)) void
+add{child:Component):void

+removeichild:Component):void
+getChild(indexint):Component

¢
Leaf
+operation():void +operation():void

+add{child:Component):void

forall g in children +remove(child:Component):void
g.operation(); +getChild{indexint):Component

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

N
N

Consequences: Composite

 Benefits

— defines class hierarchies consisting of primitive
objects and composite objects

— makes the client simple

— makes it easier to add new kinds of components
 Drawbacks

— can make your design overly general

Known Uses: Composite

 java.awt.Component
 java.io.File

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

N
O

Questions: Composite

The Composite Pattern is one of the most
commonly used patterns in Object
Orientation. How would you go about
designing the Mailing List example without
this patterns, i.e. without having a common
superclass?

What maintenance issues would this
cause?

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

w
o

Exercises: Composite

* Add isLeaf():boolean and
children():Iterator methods to Contact.

children() returns an lterator of all children
of the current contact (not recursively).

Leaves would return a Nulllterator (which
IS a Singleton).

 Write an external Contactlterator class
that returns all the leaves below a Contact.

 Map the Contact example to a relational
database.

Singleton

 [ntent

— Ensure a class only
has one instance, and
provide a global point
of access to it.

SecurityModule

-passwords:Propedies

-SecurityModuled)

+getinstance:SecurityModule

+login{user:String, pwd:String):UserContext
-secureHash({pwd:String): String
+hewlser(ctcUserContext user:String, pwd: String):void
+UserContext

Sample Code: Singleton

public class SecurityModule ({
private static SecurityModule instance =
new SecurityModule() ;

public static SecurityModule getlInstance() ({
return instance;

}

private SecurityModule () {
loadPasswords () ;

}

public UserContext login(String username,
String password) {
return new UserContext (username, password) ;

}
// etc.

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

W
U1

Applicability: Singleton

« Use the Singleton pattern when

— there must be exactly one instance of a class,
and it must be accessible to clients from a well-
Known access point.

— when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

Singleton

-instance:Singleton
-singletonData:HashMap

-Singleton()

+getinstance():Singleton
+singletonMethodA(: void
+singletonMethodB(:void

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

W
N

Consequences: Singleton

 Benefits
— Controlled access to sole instance

— Reduced name space

— Permits refinement of operations and
representation

— Permits a variable number of instances
— More flexible than class operations

 Drawbacks
— Overuse can make a system less OO.

Known Uses in Java: Singleton

» java.lang.Runtime.getRuntime()
+ java.awt.Toolkit.getDefaultToolkit()

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

w
O

Questions: Singleton

« The pattern for Singleton uses a private
constructor, thus preventing extendabillity.
What issues should you consider if you want
to make the Singleton “polymorphic™?

« Sometimes a Singleton needs to be set up
with certain data, such as filename,
database URL, etc. How would you do this,
and what are the issues involved?

Exercises: Singleton

* Turn the following class into a
Singleton:

public class Earth {
public static void spin() {}
public static void warmUp() {}

}

public class EarthTest ({
public static void main (String[] args) ({
Earth.spin() ;
Earth.warmUp () ;
}
}

* Now change it to be extendible

Copyright © 2001 Maxkab Solutions CC - All Rights Reserved

AN
—

4: Conclusion

* Design Patterns will help you write real
Object Orientated code

The textbook by GoF is very intimidating

* More information about how you can learn
Design Patterns on:

— http://www.javaspecialists.co.za
* Questions ...
 Email: heinz@javaspecialists.co.za

_.-A...

-!‘-‘T:H: pr by U .““'

Design Patterns
Mauritius

Design Patterns London

%

o

»

at -17° Cel

