
Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

1

Design Patterns
The Timeless Way of Coding

Designed and Presented by
Dr. Heinz Kabutz

Illustrations by Edith Sher

Copyright © 2001 Maxkab Solutions CC – All Rights Reserved

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

2

1: Introduction to Patterns

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

3

Who am I?
• Java Programmer
• Trainer of Java and Design Patterns

Courses in various places of the world
• Java Consultant

– combining Confuse and Insult
• Publish a Java newsletter with a small

audience of Java specialists

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

4

Purpose of Talk
1. To give something back to the Cape Town

Java community
2. Explain a bit about why Design Patterns

are important
3. Inspire you to learn for yourself

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

5

Questions
• Please please please please ask questions!
• There are some stupid questions

– They are the ones you didn’t ask
– Once you’ve asked them, they are not stupid

anymore
• Assume that if you didn’t understand

something that it was my fault
• The more you ask, the more everyone

learns (including me)

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

6

What is a Design Pattern?
• A design idea that has been applied many

times, with success
• Designs that result in reusable code
• In our case, we will look at Object Oriented

Design Patterns

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

7

Vintage Wines
• Design Patterns are like good red wine

– You cannot appreciate them at first
– As you study them you learn the difference

between plonk and vintage
– As you become a connoisseur you experience

the various textures you didn’t notice before
• Warning: Once you are hooked,

you will no longer be satisfied
with plonk!

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

8

Why are patterns so important?
• Provide a view into the brains

of OO experts
• Help you understand existing

designs
• Patterns in Java, Volume 1,

Mark Grand writes
– "What makes a bright, experienced programmer

much more productive than a bright, but
inexperienced, programmer is experience."

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

9

Coding Patterns
• We have all seen patterns in code:

– for (int i=0; i<names.length; i++) ...

– common data structures, like linked list
• This is the way we “do things”
• Most courses teach the syntax of a

language, not the semantics
• Design is normally learnt through

experience

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

10

Introduction
• For this talk I assume you have a good

understanding of the basic OO concepts of
encapsulation, abstraction, composition and
inheritance

• Should be able to follow basic UML class
diagrams

• Design Patterns is the recommended text;
additional references are shown where
applicable

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

11

Textbook – “Design Patterns”
• “Design Patterns” book by

Gang of Four (GoF)
• Contains a collection of

basic “patterns” that
experienced OO developers use regularly

• Cannot proceed very far in Java / C++ /
VB.NET without understanding patterns

• Facilitates better communication
• Based on work of renegade architect

Christopher Alexander in “The Timeless Way
of Building”

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

12

Pattern Structure
• Classic

– Intent
– Also Known As
– Motivation
– Applicability
– Structure
– Participants
– Collaborations
– Consequences
– Implementation
– Sample Code
– Known Uses
– Related Patterns

• This Course
– Intent
– Also Known As
– Motivation
– Sample Code
– Applicability
– Structure
– Consequences
– Known Uses In

Java
• The other

sections are left
for self-study

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

13

What’s in a name?
The Timeless Way of Building

The search for a name is a fundamental
part of the process of inventing or

discovering a pattern.
So long as a pattern has a weak name, it
means that it is not a clear concept, and

you cannot tell me to make “one”.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

14

Why do we need a diagram?
The Timeless Way of Building

If you can’t draw a [class] diagram of it, it
isn’t a pattern

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

15

Misuse of Design Patterns
• Patterns Misapplied

– “design” patterns should not be used during
analysis

• Cookie Cutter Patterns
– patterns are generalised solutions

• Misuse By Omission
– reinventing a crooked wheel

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

16

Summary
• Object Orientation is here to stay
• Design Patterns will fast-track you in

learning how to design with objects

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

17

2: Composite

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

18

Composite
• Intent

– Compose objects into tree structures to
represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions
of objects uniformly.

• Intent according to Vlissides
– Assemble objects into tree structures. Composite

simplifies clients by letting them treat individual
objects and assemblies of objects uniformly.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

19

Motivation: Composite

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

20

Sample Code: Contact
public abstract class Contact {
 public void add(Contact contact) {}
 public void remove(Contact contact) {}
 public abstract void sendMail(String msg);
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

21

Sample Code: Person
public class Person extends Contact {
 private final String email;
 public Person(String email) {
 this.email = email;
 }

 public void sendMail(String msg) {
 System.out.println("To: " + email);
 System.out.println("Msg: " + msg);
 System.out.println();
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

22

Sample Code: DistributionList
import java.util.*;
public class DistributionList extends Contact {
 private List contacts = new LinkedList();
 public void add(Contact contact) {
 contacts.add(contact);
 }
 public void remove(Contact contact) {
 contacts.remove(contact);
 }

 public void sendMail(String msg) {
 Iterator it = contacts.iterator();
 while(it.hasNext()) {
 ((Contact)it.next()).sendMail(msg);
 }
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

23

Sample Code: MailClient
public class MailClient {
 public static void main(String[] args) {
 Contact tjsn = new DistributionList();
 tjsn.add(new Person("john@aol.com"));
 Contact students = new DistributionList();
 students.add(new Person("amrita@intnet.mu"));
 tjsn.add(students);
 tjsn.add(new Person("anton@bea.com"));
 tjsn.sendMail(
 "welcome to the 5th edition of ...");
 }
}

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

24

> java MailClient 
To: john@aol.com
Msg: welcome to the 5th edition of ...

To: amrita@intnet.mu
Msg: welcome to the 5th edition of ...

To: anton@bea.com
Msg: welcome to the 5th edition of ...

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

25

Applicability: Composite
• Use the Composite pattern when

– you want to represent part-whole hierarchies of
objects.

– you want clients to be able to ignore the
difference between compositions of objects and
individual objects.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

26

Structure: Composite

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

27

Consequences: Composite
• Benefits

– defines class hierarchies consisting of primitive
objects and composite objects

– makes the client simple
– makes it easier to add new kinds of components

• Drawbacks
– can make your design overly general

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

28

Known Uses: Composite
• java.awt.Component
• java.io.File

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

29

Questions: Composite
• The Composite Pattern is one of the most

commonly used patterns in Object
Orientation. How would you go about
designing the Mailing List example without
this patterns, i.e. without having a common
superclass?

• What maintenance issues would this
cause?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

30

Exercises: Composite
• Add isLeaf():boolean and

children():Iterator methods to Contact.
children() returns an Iterator of all children
of the current contact (not recursively).
Leaves would return a NullIterator (which
is a Singleton).

• Write an external ContactIterator class
that returns all the leaves below a Contact.

• Map the Contact example to a relational
database.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

31

3: Singleton

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

32

Singleton
• Intent

– Ensure a class only
has one instance, and
provide a global point
of access to it.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

33

Motivation: Singleton
• It’s important for some classes to have

exactly one instance, e.g. SecurityModule

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

34

Sample Code: Singleton
public class SecurityModule {
 private static SecurityModule instance =
 new SecurityModule();

 public static SecurityModule getInstance() {
 return instance;
 }

 private SecurityModule() {
 loadPasswords();
 }

 public UserContext login(String username,
 String password) {
 return new UserContext(username, password);
 }

 // etc.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

35

Applicability: Singleton
• Use the Singleton pattern when

– there must be exactly one instance of a class,
and it must be accessible to clients from a well-
known access point.

– when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

36

Structure: Singleton

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

37

Consequences: Singleton
• Benefits

– Controlled access to sole instance
– Reduced name space
– Permits refinement of operations and

representation
– Permits a variable number of instances
– More flexible than class operations

• Drawbacks
– Overuse can make a system less OO.

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

38

Known Uses in Java: Singleton
• java.lang.Runtime.getRuntime()
• java.awt.Toolkit.getDefaultToolkit()

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

39

Questions: Singleton
• The pattern for Singleton uses a private

constructor, thus preventing extendability.
What issues should you consider if you want
to make the Singleton “polymorphic”?

• Sometimes a Singleton needs to be set up
with certain data, such as filename,
database URL, etc. How would you do this,
and what are the issues involved?

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

40

Exercises: Singleton
• Turn the following class into a

Singleton:

public class Earth {
 public static void spin() {}
 public static void warmUp() {}
}

public class EarthTest {
 public static void main(String[] args) {
 Earth.spin();
 Earth.warmUp();
 }
}

• Now change it to be extendible

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

41

4: Conclusion
• Design Patterns will help you write real

Object Orientated code
• The textbook by GoF is very intimidating
• More information about how you can learn

Design Patterns on:
– http://www.javaspecialists.co.za

• Questions …
• Email: heinz@javaspecialists.co.za

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

42

Design Patterns

 Mauritius

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

43

Design Patterns Germany

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

44

Design Patterns South Africa

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

45

Design Patterns London

Co
py

rig
ht

 ©
 2

00
1

M
ax

ka
b

So
lu

tio
ns

 C
C

–
Al

l R
ig

ht
s

Re
se

rv
ed

46

Design Patterns Estonia
at –17o Celsius

